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INTRODUCTION 
 
Finite element modeling (FEM) is a suitable method 
to study the mechanics of biological tissues, but its 
utility for studying soft tissues has been limited by 
problems with numerical stability at large, complex 
deformations. Here, we describe a new paradigm for 
finite element tissue modeling that greatly increases 
numerical stability: explicit specification of a strain 
energy density function using SefeaTM (Strain-
Enriched FEA, AMPS Technologies). This method 
relies on numerical differentiation of the strain 
energy function to calculate the stress and tangent 
tensors for each integration point (instead of using 
complex analytical expressions). We create an 
image-based model of a hamstring musculotendon 
unit—the biceps femoris longhead—to demonstrate 
this method’s utility and stability. 
 
METHODS 
 
Typically, FEM of hyperelastic materials relies on a 
strain energy density function. For example, a 
simple isotropic, quasi-incompressible hyperelastic 
material model is a Mooney-Rivlin solid, whose 
strain energy function is given by the expression 
 

𝑊 = 𝐶!" 𝐼! − 3 + 𝐶!" 𝐼! − 3 +𝑊(𝐽) 
 
Where 𝑊 is the strain energy (a scalar), 𝐶!" and 𝐶!" 
are material constants, 𝐼! and 𝐼! are scalar deviatoric 
invariants that are functions of the deformation 
tensor, and 𝑊(𝐽) is a volumetric strain energy term 
of the relative volume 𝐽 in order to enforce a nearly-
incompressible material response. More complex 
strain energy functions can be used for transversely 
isotropic biological tissues. Most solvers require 
calculation of the stress and tangent tensors that are 
functions of the derivatives of the strain energy 
density with respect to the right Cauchy-green 
deformation tensor 𝐶: 
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𝜕𝑊
𝜕𝐶  
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where 𝜎 is the Cauchy stress and ∁ is the tangent 
tensor. These tensors are typically calculated 
analytically, but SefeaTM calculates them with 
numerical differentiation of the strain energy 
density function. 
 

 
Figure 1: We integrate the force-length relationship 
of muscle [1] to obtain an explicit strain energy 
function for muscle. 
 
The advantages of SefeaTM include i) using 
enhanced 4-node tetrahedral elements to enable 
automatic meshing and ii) specifying an explicit 
strain energy density function rather than the stress 
and tangent tensors. We determine the along-fiber 
strain energy function of muscle by integrating the 
force-length curve of muscle [1] (Figure 1). The 
active force curve scales with muscle activation. 
The same operation is performed to determine the 



tendon strain energy function. We used material 
parameters for muscle and tendon from a previous 
study [1]. 

 
Figure 2: (a) MRI-based solid model of the biceps 
femoris longhead [2]. (b) Computational fluid 
dynamics determines the fiber directions for the 
transversely isotropic formulation [3]. (c) The solid 
was meshed automatically with enhanced 4-node 
tetrahedral elements and the distal tendon was 
displaced by 8cm. (d) The deformed mesh reaches 
full convergence. (e) Strain distributions within the 
muscle are non-uniform. 
 
We created a 3D model of the biceps femoris 
longhead based on MRI data [2] (Figure 2a). We 
used used computational fluid dynamics to specify 
fascicle trajectories for the transversely isotropic 
material models [3] (Figure 2b). We used automatic 
tetrahedral meshing and simulated a long eccentric 

contraction by ramping the muscle activation from 0 
to 1 while displacing the distal tendon by 8cm (well 
above the stretch during sprinting of 5cm [4]) 
(Figure 2c).  
 
RESULTS  
 
The model was numerically stable using SefeaTM, 
reaching full convergence (Figure 2d). The 
deformed model at a physiological 2cm 
displacement (approximately 40° of knee extension 
[2]) shows non-uniform strain distributions (Figure 
2e). Non-uniform strain distributions have been 
shown characteristically in previous finite element 
studies of eccentric contraction [1,2,4].  
 
DISCUSSION  
 
Our new finite element modeling paradigm of 
explicit strain energy function specification within 
SefeaTM significantly enhances numerical stability. 
Furthermore, it enables fully automatic meshing of 
biological tissues of arbitrary shape and complexity 
using 4-node tetrahedral elements. These elements 
are also stable in contact scenarios—typically not 
the case for non-linear elements. This new paradigm 
and technology will empower hyperelastic finite 
element studies of biological tissues that would be 
otherwise unfeasible. 
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